Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.194
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598338

RESUMO

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Assuntos
Nanoporos , Infecção por Zika virus , Zika virus , Animais , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Primatas/genética , Zika virus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
2.
J Mammary Gland Biol Neoplasia ; 29(1): 8, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573417

RESUMO

How cancer patterns in humans compare to those of other species remains largely unknown and there is an even bigger knowledge gap for rare cancers like male breast cancer. One Health is a convergence of human and animal healthcare that encourages cross-pollination of medical research uniting human and veterinary medicine. Recognising that breast cancer occurs spontaneously in other male species (e.g. primates, canines, felines), and knowing that no laboratory models exist for male breast cancer, which limits our ability to perform functional studies, we explored the feasibility of applying One Health to breast cancer in men by conducting a narrative review of the topic. Spontaneous development of breast cancer was reported in captive male primates and in companion canines and felines. Some parallels in tumour biology of human male breast cancer with canines and primates were found. The age distribution, pattern of biomarker expression and metastasis were similar, with mammary tumours typically detected after two-thirds of average lifespan. However, instances of triple negative and inflammatory breast cancer, which are rarely observed in human male breast cancer, were found in canines and histological classification was inconsistent between species. These disparities need redressing to enable full exploration of the One Health paradigm in rare cancers.


Assuntos
Neoplasias da Mama Masculina , Doenças do Gato , Doenças do Cão , Saúde Única , Humanos , Masculino , Animais , Gatos , Cães , Primatas
3.
Sci Transl Med ; 16(741): eadl2055, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569014

RESUMO

No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Anticorpos Monoclonais , Bangladesh , Chlorocebus aethiops , Glicoproteínas/metabolismo , Infecções por Henipavirus/prevenção & controle , Primatas , Ensaios Clínicos Fase I como Assunto
4.
J Hum Evol ; 190: 103494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564844

RESUMO

The body proportions of extant animals help inform inferences about the behaviors of their extinct relatives, but relationships between body proportions, behavior, and phylogeny in extant primates remain unclear. Advances in behavioral data, molecular phylogenies, and multivariate analytical tools make it an opportune time to perform comprehensive comparative analyses of primate traditional limb length proportions (e.g., intermembral, humerofemoral, brachial, and crural indices), body size-adjusted long bone proportions, and principal components. In this study we used a mix of newly-collected and published data to investigate whether and how the limb length proportions of a diverse sample of primates, including monkeys, apes, and modern humans, are influenced by behavior and phylogeny. We reconfirm that the intermembral index, followed by the first principal component of traditional limb length proportions, is the single most effective variable distinguishing hominoids and other anthropoids. Combined limb length proportions and positional behaviors are strongly correlated in extant anthropoid groups, but phylogeny is a better predictor of limb length proportion variation than of behavior. We confirm convergences between members of the Atelidae and extant apes (especially Pan), members of the Hylobatidae and Pongo, and a potential divergence of Presbytis limb proportions from some other cercopithecoids, which correlate with adaptations for forelimb-dominated behaviors in some colobines. Collectively, these results substantiate hypotheses indicating that extinct hominins and other hominoid taxa can be distinguished by analyzing combinations of their limb length proportions at different taxonomic levels. From these results, we hypothesize that fossil skeletons characterized by notably disparate limb length proportions are unlikely to have exhibited similar behavioral patterns.


Assuntos
Hominidae , Hylobatidae , Humanos , Animais , Filogenia , Haplorrinos , Fósseis , Primatas , Extremidade Superior , Evolução Biológica
5.
Nat Commun ; 15(1): 2822, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561329

RESUMO

The systematic status of the small-bodied catarrhine primate Pliobates cataloniae, from the Miocene (11.6 Ma) of Spain, is controversial because it displays a mosaic of primitive and derived features compared with extant hominoids (apes and humans). Cladistic analyses have recovered Pliobates as either a stem hominoid or as a pliopithecoid stem catarrhine (i.e., preceding the cercopithecoid-hominoid divergence). Here, we describe additional dental remains of P. cataloniae from another locality that display unambiguous synapomorphies of crouzeliid pliopithecoids. Our cladistic analyses support a close phylogenetic link with poorly-known small crouzeliids from Europe based on (cranio)dental characters but recover pliopithecoids as stem hominoids when postcranial characters are included. We conclude that Pliobates is a derived stem catarrhine that shows postcranial convergences with modern apes in the elbow and wrist joints-thus clarifying pliopithecoid evolution and illustrating the plausibility of independent acquisition of postcranial similarities between hylobatids and hominids.


Assuntos
Fósseis , Hominidae , Animais , Humanos , Filogenia , Primatas , Cercopithecidae , Evolução Biológica
7.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612733

RESUMO

In the human genome, two short open reading frames (ORFs) separated by a transcriptional silencer and a small intervening sequence stem from the gene SMIM45. The two ORFs show different translational characteristics, and they also show divergent patterns of evolutionary development. The studies presented here describe the evolution of the components of SMIM45. One ORF consists of an ultra-conserved 68 amino acid (aa) sequence, whose origins can be traced beyond the evolutionary age of divergence of the elephant shark, ~462 MYA. The silencer also has ancient origins, but it has a complex and divergent pattern of evolutionary formation, as it overlaps both at the 68 aa ORF and the intervening sequence. The other ORF consists of 107 aa. It develops during primate evolution but is found to originate de novo from an ancestral non-coding genomic region with root origins within the Afrothere clade of placental mammals, whose evolutionary age of divergence is ~99 MYA. The formation of the complete 107 aa ORF during primate evolution is outlined, whereby sequence development is found to occur through biased mutations, with disruptive random mutations that also occur but lead to a dead-end. The 107 aa ORF is of particular significance, as there is evidence to suggest it is a protein that may function in human brain development. Its evolutionary formation presents a view of a human-specific ORF and its linked silencer that were predetermined in non-primate ancestral species. The genomic position of the silencer offers interesting possibilities for the regulation of transcription of the 107 aa ORF. A hypothesis is presented with respect to possible spatiotemporal expression of the 107 aa ORF in embryonic tissues.


Assuntos
Genoma Humano , Placenta , Feminino , Gravidez , Animais , Humanos , Fases de Leitura Aberta/genética , Sequência de Aminoácidos , Primatas , Mamíferos
8.
Anim Cogn ; 27(1): 33, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616235

RESUMO

Figure-ground segmentation is a fundamental process in visual perception that involves separating visual stimuli into distinct meaningful objects and their surrounding context, thus allowing the brain to interpret and understand complex visual scenes. Mammals exhibit varying figure-ground segmentation capabilities, ranging from primates that can perform well on figure-ground segmentation tasks to rodents that perform poorly. To explore figure-ground segmentation capabilities in teleost fish, we studied how the archerfish, an expert visual hunter, performs figure-ground segmentation. We trained archerfish to discriminate foreground objects from the background, where the figures were defined by motion as well as by discontinuities in intensity and texture. Specifically, the figures were defined by grating, naturalistic texture, and random noise moving in counterphase with the background. The archerfish performed the task well and could distinguish between all three types of figures and grounds. Their performance was comparable to that of primates and outperformed rodents. These findings suggest the existence of a complex visual process in the archerfish visual system that enables the delineation of figures as distinct from backgrounds, and provide insights into object recognition in this animal.


Assuntos
Perciformes , Animais , Encéfalo , Percepção Visual , Primatas , Mamíferos
9.
Front Neural Circuits ; 18: 1389110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601266

RESUMO

The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.


Assuntos
Lobo Frontal , Macaca , Animais , Lobo Frontal/fisiologia , Células Piramidais , Interneurônios , Haplorrinos , Primatas , Cognição , Córtex Cerebral
10.
Acta Neuropathol Commun ; 12(1): 58, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610040

RESUMO

Glaucoma leads to vision loss due to retinal ganglion cell death. Astrocyte reactivity contributes to neurodegeneration. Our recent study found that lipoxin B4 (LXB4), produced by retinal astrocytes, has direct neuroprotective actions on retinal ganglion cells. In this study, we aimed to investigate how the autacoid LXB4 influences astrocyte reactivity in the retina under inflammatory cytokine-induced activation and during ocular hypertension. The protective activity of LXB4 was investigated in vivo using the mouse silicone-oil model of chronic ocular hypertension. By employing a range of analytical techniques, including bulk RNA-seq, RNAscope in-situ hybridization, qPCR, and lipidomic analyses, we discovered the formation of lipoxins and expression of the lipoxin pathway in rodents (including the retina and optic nerve), primates (optic nerve), and human brain astrocytes, indicating the presence of this neuroprotective pathway across various species. Findings in the mouse retina identified significant dysregulation of the lipoxin pathway in response to chronic ocular hypertension, leading to an increase in 5-lipoxygenase (5-LOX) activity and a decrease in 15-LOX activity. This dysregulation was coincident with a marked upregulation of astrocyte reactivity. Reactive human brain astrocytes also showed a significant increase in 5-LOX. Treatment with LXB4 amplified the lipoxin biosynthetic pathway by restoring and amplifying the generation of another member of the lipoxin family, LXA4, and mitigated astrocyte reactivity in mouse retinas and human brain astrocytes. In conclusion, the lipoxin pathway is functionally expressed in rodents, primates, and human astrocytes, and is a resident neuroprotective pathway that is downregulated in reactive astrocytes. Novel cellular targets for LXB4's neuroprotective action are inhibition of astrocyte reactivity and restoration of lipoxin generation. Amplifying the lipoxin pathway is a potential target to disrupt or prevent astrocyte reactivity in neurodegenerative diseases, including retinal ganglion cell death in glaucoma.


Assuntos
Glaucoma , Lipoxinas , Hipertensão Ocular , Humanos , Animais , Camundongos , Lipoxinas/farmacologia , Astrócitos , Citocinas , Retina , Modelos Animais de Doenças , Primatas
11.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592269

RESUMO

Visual detection is a fundamental natural task. Detection becomes more challenging as the similarity between the target and the background in which it is embedded increases, a phenomenon termed 'similarity masking'. To test the hypothesis that V1 contributes to similarity masking, we used voltage sensitive dye imaging (VSDI) to measure V1 population responses while macaque monkeys performed a detection task under varying levels of target-background similarity. Paradoxically, we find that during an initial transient phase, V1 responses to the target are enhanced, rather than suppressed, by target-background similarity. This effect reverses in the second phase of the response, so that in this phase V1 signals are positively correlated with the behavioral effect of similarity. Finally, we show that a simple model with delayed divisive normalization can qualitatively account for our findings. Overall, our results support the hypothesis that a nonlinear gain control mechanism in V1 contributes to perceptual similarity masking.


Assuntos
Macaca , Primatas , Animais , Mascaramento Perceptivo , Imagens com Corantes Sensíveis à Voltagem
12.
Anim Cogn ; 27(1): 5, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429436

RESUMO

Humans and many other animal species act in ways that benefit others. Such prosocial behaviour has been studied extensively across a range of disciplines over the last decades, but findings to date have led to conflicting conclusions about prosociality across and even within species. Here, we present a conceptual framework to study the proximate regulation of prosocial behaviour in humans, non-human primates and potentially other animals. We build on psychological definitions of prosociality and spell out three key features that need to be in place for behaviour to count as prosocial: benefitting others, intentionality, and voluntariness. We then apply this framework to review observational and experimental studies on sharing behaviour and targeted helping in human children and non-human primates. We show that behaviours that are usually subsumed under the same terminology (e.g. helping) can differ substantially across and within species and that some of them do not fulfil our criteria for prosociality. Our framework allows for precise mapping of prosocial behaviours when retrospectively evaluating studies and offers guidelines for future comparative work.


Assuntos
Altruísmo , Comportamento Social , Humanos , Animais , Estudos Retrospectivos , Primatas
13.
Adv Neurobiol ; 36: 241-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468036

RESUMO

The evolution of the brain in mammals is characterized by changes in size, architecture, and internal organization. Consequently, the geometry of the brain, and especially the size and shape of the cerebral cortex, has changed notably during evolution. Comparative studies of the cerebral cortex suggest that there are general architectural principles governing its growth and evolutionary development. In this chapter, some of the design principles and operational modes that underlie the fractal geometry and information processing capacity of the cerebral cortex in primates, including humans, will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains.


Assuntos
Evolução Biológica , Fractais , Animais , Humanos , Encéfalo , Primatas , Córtex Cerebral , Mamíferos
14.
Nat Commun ; 15(1): 2171, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462641

RESUMO

A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.


Assuntos
Anestésicos , Propofol , Animais , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Propofol/farmacologia , Córtex Cerebral , Primatas , Tálamo/diagnóstico por imagem , Anestésicos/farmacologia
15.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475827

RESUMO

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Assuntos
Aciltransferases , Hiperalgesia , Canais Iônicos , Tato , Animais , Feminino , Masculino , Camundongos , Hiperalgesia/patologia , Canais Iônicos/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Dor , Primatas , Tato/fisiologia , Aciltransferases/metabolismo
16.
Cell Rep ; 43(3): 113902, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431840

RESUMO

Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.


Assuntos
Capsídeo , Dependovirus , Humanos , Animais , Camundongos , Capsídeo/metabolismo , Dependovirus/metabolismo , Histonas/metabolismo , Transcrição Viral , Vetores Genéticos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Primatas , Especificidade de Hospedeiro , Cromatina/metabolismo
17.
Neuroimage ; 291: 120581, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508293

RESUMO

Temporal interference (TI) stimulation, a novel non-invasive stimulation strategy, has recently been shown to modulate neural activity in deep brain regions of living mice. Yet, it is uncertain if this method is applicable to larger brains and whether the electric field produced under traditional safety currents can penetrate deep regions as observed in mice. Despite recent model-based simulation studies offering positive evidence at both macro- and micro-scale levels, the absence of electrophysiological data from actual brains hinders comprehensive understanding and potential application of TI. This study aims to directly measure the spatiotemporal properties of the interfered electric field in the rhesus monkey brain and to validate the effects of TI on the human brain. Two monkeys were involved in the measurement, with implantation of several stereo-electroencephalography (SEEG) depth electrodes. TI stimulation was applied to anesthetized monkeys using two pairs of surface electrodes at differing stimulation parameters. Model-based simulations were also conducted and subsequently compared with actual recordings. Additionally, TI stimulation was administered to patients with motor disorders to validate its effects on motor symptoms. Through the integration of computational electric field simulation with empirical measurements, it was determined that the temporally interfering electric fields in the deep central regions are capable of attaining a magnitude sufficient to induce a subthreshold modulation effect on neural signals. Additionally, an improvement in movement disorders was observed as a result of TI stimulation. This study is the first to systematically measure the TI electric field in living non-human primates, offering empirical evidence that TI holds promise as a more focal and precise method for modulating neural activities in deep regions of a large brain. This advancement paves the way for future applications of TI in treating neuropsychiatric disorders.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Humanos , Animais , Camundongos , Encéfalo/fisiologia , Eletrodos , Simulação por Computador , Eletroencefalografia , Primatas , Estimulação Encefálica Profunda/métodos
18.
J Med Primatol ; 53(2): e12694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454198

RESUMO

BACKGROUND: Animal models of respiratory viral infections are essential for investigating disease pathogenesis and the efficacy of antivirals and vaccine candidates. A major limitation in the research of respiratory diseases in animal models is correlating clinically relevant changes in pulmonary physiology with cellular and molecular mechanistic studies. Few animal models have captured and correlated physiologic changes in lung function and immune response within same experiment, which is critical given the heterogeneous nature of lung disease due to viral infections. In ventilated human patients, pulmonary physiology testing can be used to not only capture oxygenation, ventilation, but also pulmonary mechanics to yield quantitative measures of lung function and scalar tracings of flow-volume and pressure-volume loops. Application of this protocol during mechanical ventilation in non-human (NHP) models would represent a major advance in respiratory viral disease research. METHODS: We have applied and optimized a human pulmonary physiology testing protocol to ventilated pigtail macaques (Macaca nemestrina) at baseline and 5 days after influenza A (IAV) viral inoculation. RESULTS: The NHPs manifested clinical disease with hypothermia and loss of body weight. Declines in lung function were striking with a 66%-81% decline in P/F ratio, a measure of oxygenation reflecting the ratio of partial pressure of oxygen in arterial blood (PaO2 ) to the fraction of inspiratory oxygen concentration (FiO2 ). There was also a 16%-45% decline in lung compliance. CONCLUSION: We describe a new approach to performing pulmonary physiology testing protocol in non-human primates to better capture quantitative correlates of respiratory disease and demonstrate protection by therapeutics and vaccines.


Assuntos
Pulmão , Viroses , Humanos , Animais , Respiração Artificial/métodos , Oxigênio , Primatas
19.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426398

RESUMO

Climbing represents a critical behavior in the context of primate evolution. However, anatomically modern human populations are considered ill-suited for climbing. This adaptation can be attributed to the evolution of striding bipedalism, redirecting anatomical traits away from efficient climbing. Although prior studies have speculated on the kinetic consequences of this anatomical reorganization, there is a lack of data on the force profiles of human climbers. This study utilized high-speed videography and force plate analysis to assess single limb forces during climbing from 44 human participants of varying climbing experience and compared these data with climbing data from eight species of non-human primates (anthropoids and strepsirrhines). Contrary to expectations, experience level had no significant effect on the magnitude of single limb forces in humans. Experienced climbers did, however, demonstrate a predictable relationship between center of mass position and peak normal forces, suggesting a better ability to modulate forces during climbing. Humans exhibited significantly higher peak propulsive forces in the hindlimb compared with the forelimb and greater hindlimb dominance overall compared with non-human primates. All species sampled demonstrated exclusively tensile forelimbs and predominantly compressive hindlimbs. Strepsirrhines exhibited a pull-push transition in normal forces, while anthropoid primates, including humans, did not. Climbing force profiles are remarkably stereotyped across humans, reflecting the universal mechanical demands of this form of locomotion. Extreme functional differentiation between forelimbs and hindlimbs in humans may help to explain the evolution of bipedalism in ancestrally climbing hominoids.


Assuntos
Locomoção , Primatas , Animais , Humanos , Fenômenos Biomecânicos , Membro Posterior , Extremidade Inferior
20.
ACS Chem Neurosci ; 15(7): 1548-1559, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527459

RESUMO

Ischemic strokes, prevalence and impactful, underscore the necessity of advanced research models closely resembling human physiology. Our study utilizes nonhuman primates (NHPs) to provide a detailed exploration of ischemic stroke, integrating neuroimaging data, behavioral outcomes, and serum proteomics to elucidate the complex interplay of factors involved in stroke pathophysiology. We observed a consistent pattern in infarct volume, peaking at 1-month postmiddle cerebral artery occlusion (MCAO) and then stabilized. This pattern was strongly correlated to notable changes in motor function and working memory performance. Using diffusion tensor imaging (DTI), we detected significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values, signaling microstructural changes in the brain. These alterations closely correlated with the neurological and cognitive deficits that we observed, highlighting the sensitivity of DTI metrics in stroke assessment. Behaviorally, the monkeys exhibited a reliance on their unaffected limb for compensatory movements, a common response to stroke impairment. This adaptation, along with consistent DTI findings, suggests a significant impact of stroke on motor function and spatial perception. Proteomic analysis through MS/MS functional enrichment identified two distinct groups of proteins with significant changes post-MCAO. Notably, MMP9, THBS1, MB, PFN1, and YWHAZ were identified as potential biomarkers and therapeutic targets for ischemic stroke. Our results underscore the complex nature of stroke and advocate for an integrated approach, combining neuroimaging, behavioral studies, and proteomics, for advancing our understanding and treatment of this condition.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Humanos , AVC Isquêmico/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Proteômica , Espectrometria de Massas em Tandem , Acidente Vascular Cerebral/diagnóstico por imagem , Neuroimagem , Primatas , Profilinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...